Шпилька резьбовая дуговая приварная ARC тип PD, нержавеющая сталь с алюминиевым шариком

Описание

Шпилька резьбовая дуговая приварная типа **PD** предназначена для крепления различных элементов (изоляции, трубопроводов, кабелей и др.) к металлическим поверхностям методом дуговой сварки. Изготовлена из **нержавеющей стали**, что обеспечивает высокую коррозионную стойкость в агрессивных средах. На конце шпильки расположен **алюминиевый шарик**, облегчающий процесс сварки и обеспечивающий надежное соединение.

Конструктивные особенности

- Материал: нержавеющая сталь (AISI 304, 316 или др.)
- Тип крепления: дуговая сварка (ARC)
- Конструкция: резьбовая шпилька с алюминиевым шариком на свариваемом конце
- **Резьба:** метрическая (M4, M6, M8, M10, M12, M16, M20, M24)
- Покрытие: без покрытия (нержавеющая сталь)

Преимущества

- ✓ Высокая прочность надежное крепление даже при вибрациях и нагрузках
- √ Коррозионная стойкость подходит для эксплуатации во влажных и химически агрессивных средах
- ✓ Быстрый монтаж алюминиевый шарик обеспечивает стабильное зажигание дуги и качественный шов
- **√** Долговечность нержавеющая сталь не ржавеет и сохраняет свойства при высоких температурах

Область применения

- Крепление теплоизоляции на трубопроводах и оборудовании
- Монтаж кабельных трасс и сантехнических систем
- Установка технологических конструкций в судостроении, нефтегазовой и химической промышленности
- Применение в пищевой и фармацевтической отраслях благодаря гигиеничности нержавеющей стали
- Технические параметры

Параметр	Значение
Тип сварки	Дуговая (ARC)
Материал	Нержавеющая сталь (AISI 304/316)
Резьба	Метрическая (М4-М24)
Длина	20-200 мм (стандартные размеры)
Рабочая температура	-60°C до +400°C

Метод монтажа

- 1. Подготовка поверхности очистка от загрязнений и окислов.
- 2. Установка шпильки прижатие к металлу свариваемым концом.
- 3. Сварка подача тока через держатель, алюминиевый шарик обеспечивает стабильную дугу.
- 4. **Крепление элемента** накручивание гайки или другого элемента на резьбовую часть.

Шпилька резьбовая приварная типа PD с неполной резьбой – нержавеющая сталь с алюминиевым шариком

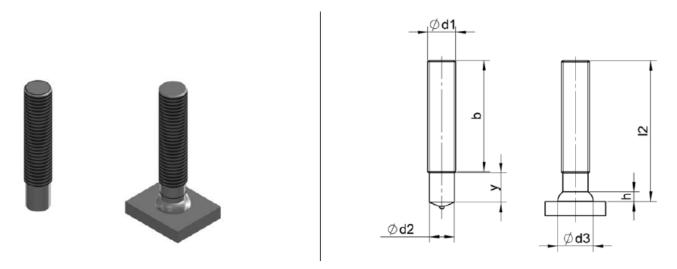
Ключевые особенности

- Частичная резьба гладкий участок шпильки у сварочного конца обеспечивает лучшую прочность сварного соединения.
- Точное соответствие диаметров диаметр гладкой части равен среднему диаметру резьбы (D₂), что гарантирует правильное позиционирование при сварке.
- Усиленный сварочный валик диаметр сварного шва на **3–4 мм больше наружного диаметра** резьбы, улучшая распределение нагрузки.
- **Материал**: нержавеющая сталь (AISI 304/316) с **алюминиевым стартовым шариком** для легкого поджига дуги.
- Технические характеристики

Параметр	Описание					
Тип резьбы	Метрическая (с частичной резьбой, гладкий участок у сварочного конца)					
Диаметр гладкой части	Соответствует среднему диаметру резьбы (D ₂) по ISO 724 или DIN 13					
Сварочный валик	На ~3−4 мм больше наружного диаметра резьбы (D)					
Метод сварки	Дуговая приварка (ARC)					
Стандарты	ISO 13918, DIN 32500 (возможна адаптация под ГОСТ/ANSI)					

Преимущества частичной резьбы

- ✓ Повышенная прочность сварки гладкий участок исключает деформацию резьбы при сварке.
- ✓ **Равномерное распределение нагрузки** увеличенный сварочный валик снижает напряжение у основания резьбы.
- ✓ Совместимость соответствует стандартным средним диаметрам резьбы для удобства монтажа с гайками.


Типичные области применения

- Несущие конструкции в агрессивных средах (химическая промышленность, морские платформы).
- Крепление трубопроводов и теплоизоляции в системах вентиляции.

• Заземление электрооборудования, где требуется минимизировать нагрев резьбовой части.

Примечание по монтажу

Алюминиевый шарик позволяет сваривать без защитного газа в большинстве случаев.

Размеры, мм						Материал			I.C	
d_1	12	у	b	d_2	d_3	h	Углеродистая сталь 4.8	A2-50	A5-50	Керамическое кольцо
M6	$ 15 \le l_2 < 35 35 \le l_2 < 65 65 \le l_2 < 160 $	9 - -	- 20 40	5,3	8,5	3,5	46-06-XXX	47-06-XXX	48-06-XXX	PF6
M8	$20 \le l_2 < 50$ $50 \le l_2 < 160$ $l_2 \ge 160$	9 - -	- 40 40	7,1	10,0	3,5	46-08-XXX	47-08-XXX	48-08-XXX	PF8
M10	$20 \le l_2 < 50$ $50 \le l_2 < 140$ $140 \le l_2 \le 160$	9,5 - -	- 40 80	8,95	12,5	4,0	46-10-XXX	47-10-XXX	48-10-XXX	PF10
M12	$25 \le l_2 < 50$ $50 \le l_2 < 140$ $140 \le l_2 \le 160$	11,5 - -	- 40 80	10,8	15,5	4,5	46-12-XXX	47-12-XXX	48-12-XXX	PF12
M16	$\begin{array}{c} 30 \leq l_2 < 50 \\ 50 \leq l_2 < 70 \\ 70 \leq l_2 < 100 \\ 100 \leq l_2 \leq 160 \end{array}$	13,5	40 50 80	14,6	19,5	6,0	46-16-XXX	47-16-XXX	48-16-XXX	PF16
M20	$35 \le l_2 < 50$ $50 \le l_2 < 55$ $55 \le l_2 < 70$ $70 \le l_2 < 100$ $100 \le l_2 \le 160$	15,5	35 40 50 70	18,3	22,5	7,0	46-20-XXX	47-20-XXX	48-20-XXX	MF20
M24	$\begin{array}{c} 50 \leq l_2 < 55 \\ 55 \leq l_2 < 70 \\ 70 \leq l_2 < 100 \\ 100 \leq l_2 < 150 \\ 150 \leq l_2 \leq 160 \end{array}$	20.0	30 50 70 100	22,0	30,0	10,0	46-24-XXX	47-24-XXX	48-24-XXX	UF22